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1 Overview

Background: Porous media are part of our daily life and include technical devices
like filter materials and fuel cells as well as natural systems like geologic formations
and soils. An important characteristic of porous media are capillary forces that play
a dominant role for the dynamics of such materials. It is a challenge for physicists
to model fluid flow and transport of dissolved chemicals in porous media to predict
the behavior of a system as response to various boundary conditions or to construct
porous media with the properties desired. The focus here is on soil, which is typically
characterized by a complex structure. It consists of minerals, organic material and
the pore space in-between. Moreover, this structure is typically not static but
continuously changed by plants, animals and various physical boundary conditions
due to temperature and precipitation. Crucial questions that require a quantitative
understanding of the processes in porous media are: How to store infiltrating water
in soil to warrant the growth of plants? How to prevent pollution in the environment
of waste disposals? How to treat soils contaminated by anthropogenic wastes? What
is the role of soils for global mass and energy fluxes?

Subject of the course: In principle, the microscopic structure of the pore space
determines the behavior of porous media. However we are typically not in the
position to describe this 3-dimensional structure in all detail. We aim at modeling
and predicting fluid flow and solute transport in porous media at a scale of some
10−1m within a soil up to some 103m within a catchment. This range of scales is
significantly larger than the typical size of pores in soil that are in the range of
10−6 to 10−3 m. (Just think about the amount of computer memory you would
need to store the structure of 1 dm3 soil at a resolution of 1 µm). This leads to
the introduction of ’effective’ models based on ’effective’ material properties that
translate the effects of the microscopic structure into macroscopic properties.

In the first part of this course we only consider water flow in porous media and
we introduce two effective material properties: 1) The relation between the energy
density of water (capillary pressure) and the water saturation which is referred
to as water characteristic and the relation between the water saturation of the
media and its hydraulic conductivity which is termed the hydraulic conductivity
function. An experiment is performed to determine these basic material properties
which are essential for modeling the dynamics of fluids in porous media at larger
scales.

In the second part we consider solute transport through porous media which also
may be related to macroscopic material properties as for instance a dispersion tensor.
Another experiment is performed to identify a convenient transport model and
to determine the related parameters.

Preparation To prepare this course, this short script should be sufficient. Here,
the basic theory of water dynamics in porous media is described and some practical
details on the set-up of the experiment are provided. Finally the evaluation of the
measured data through inverse modeling is described. At least the theoretical part
should be worked through prior to the course. For a deeper study of the subject
you may consider PartI and PartII-1 of Lecture Notes in Soil Physics [Roth, 1996] at
www.iup.uni-heidelberg.de/institut/forschung/groups/ts/students/edumat.html
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2 Part I: Estimation of hydraulic properties

by inverse modeling

2.1 Introduction

To model the dynamics of water in porous media at a scale much larger than the
individual pores, we introduce so called “effective material properties” which are
based on variables that are visible at the larger scale. These properties and the
related variables are obtained by averaging over the complicated porous structure
at the microscopic scale. Thereby, the details of the porous structure are lost, but the
aim is to preserve those properties that are important to quantitatively understand
the processes at the larger scale – this is why we call them ’effective’. A simple
example is the transition from the detailed binary structure of single pores to a
continuous variable at the large scale, i.e. the porosity, which measures the fraction
of pores per unit volume. This is illustrated in figure 1.

(a)

�����

(b) (c)

Figure 1: 2D and 3D structure of soil at the pore scale with a resolution of 0.04
mm/pixel obtained from serial sections (a and b). Structure of porosity including few
large pores (black spots) at a larger scale with a resolution of 0.4 mm/pixel obtained by

X-ray tomography (c).

At the pore scale (Figure 1 b), flow and transport processes may be described using
classical concepts of fluid dynamics where the acceleration of a fluid element is
related to the forces acting on it, most importantly to gravity, pressure gradients
and friction. This leads to the well-known Navier-Stokes equation. This equation
is not invoked here, however, because (i) the inertial term can be neglected for
the low flow velocities typically encountered and (ii) implementing the boundary
conditions for the pore space is next to impossible. Instead, we go for a continuum
description that is obtained from averaging. In formal analogy to the averaging used
in thermodynamics, the dynamics of water flow is described over a representative
region of the pore space. The remaining task then, is to estimate pertinent effective
material properties.
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2.2 Theory

2.2.1 Dynamics of Water Movement

As a first step towards a quantitative description of water flow in porous media we
formulate the conservation of mass of water – actually of volume since water may
be considered as incompressible – as

∂tθ + ∇ · jw = 0 , (1)

where θ is the volumetric water content and jw [LT−1] the volume flux of water.
In the following, we call jw the water flux, and assume that it is linearly related to
the gradient of the potential energy density ψw of the water. We call ψw the water
potential. It will be discussed further down. The flux law thus is of the form

jw = −K(θ)∇ψw , (2)

where the tensorial quantity K(θ) is the hydraulic conductivity that depends on the
volumetric water content. This is called the Buckingham-Darcy law. Notice the
formal analogy with flux laws for heat (Fourier), dissolved substances (Fick), and
electric charge (Ohm).
Inserting the flux law into the conservation equation yields the Richards equa-

tion

∂tθ −∇ · [K(θ)∇ψw] = 0 (3)

for the dynamics of water movement. Obviously, this equation cannot be solved yet
because there occur two unknowns, θ and ψw. We will find in the next section, that
there exists a relation between θ and a component of ψw, the matric potential ψm

which accounts for surface forces (capillary forces). This relation, which is called the
soil water characteristic θ(ψm), turns out to be a material property of the porous
material as is the hydraulic conductivity K(θ).

2.2.2 Material properties and state variables

The complicated structure of the soil cube in Figure 1b is replaced by ’effective’
measures and state variables with respect to the fluids. This can be interpreted as
averaging over microscopic properties or upscaling from microscopic to macroscopic
properties.
For the pore structure which we assume to be rigid we introduce the constant
material properties

• porosity φ [-], the volume fraction of pores

• water characteristic θ(ψ) the relation between water content and water
potential

• saturated hydraulic conductivity Ks [m s−1 ], in case all pores are filled
with water

With respect to the fluid (in our case water) within the pore space we introduce the
state variables

• volumetric water content θ [-], the volume fraction of water filled pores,
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• energy density of the water or water potential ψw [J m−3], which
includes, in a first approximation, gravity and capillary forces.

All these quantities may be attributed to a given volume of soil which is large
enough to contain all the microscopic heterogeneities. We call such a volume a
representative elementary volume (REV). From the definitions given above we can
already find some basic relations for a soil sample of volume V0. Obviously, within
the 3-phase system solid-water-air we find V0 = Vs + Vw + Va with the porosity
φ = (Vw + Va)/V0 and the water content θ = Vw/V0. The water content at complete
water saturation (Va = 0) correspond to the porosity θs = φ. If we know the density
of the solid material ρs (for quartz it is 2.65 g/cm3) we can calculate the porosity
from bulk density φ = 1 − (ρb/ρs).
In the 3-phase system soil, the hydraulic conductivity K is clearly not a material
constant because the conductivity depends on the water content. This is in contrast
to groundwater where θ = θs is constant. In soil however, the water content is a
state variable that may vary and herewith also the hydraulic conductivity. With
decreasing water content the overall cross section that conducts water decreases, as
well as the size of the water filled pores and additionally, the water has to bypass
air filled pores. All together this leads to a nonlinear decrease of K with θ. Hence,
the function K(θ) is the material property (see below).
Besides the water content, the other relevant state variable of the 3-phase system
that varies in space and time is the energy density of water ψw, in the following
referred to as water potential. At a given location in the soil, this is the energy
per unit volume of water, which is required to bring water from a reference state
to that location. We consider the reference state as free water at some defined
height z0. In the simplest case, the total water potential ψw is composed of only
two components: the potential due to gravity, ψg, and the so called matric potential
ψm which includes the effect of capillary forces. We choose the z-axis to be positive
downward and write

ψw = −ρwg[z − z0] + ψm , (4)

where ρw is the density of water and g the acceleration due to gravity.
The meaning of ψg is immediately clear but what about the matric potential ψm? In
unsaturated porous media, this potential describes the energy densities associated
with the boundary layers solid-liquid and liquid-gas. In mineral soil, the solid soil
matrix is typically wettable so that the solid material is completely covered by a
water film (i.e. the energy density of the boundary layer solid-liquid is smaller
that that of liquid-gas). Hence, the matric potential ψm is only determined by the
interface liquid-gas.
Our experiments are restricted to high water contents where the liquid-gas interface
has a constant energy density which is the surface tension σwa (0.0725 J m−2 for
pure water at 20◦C). At equilibrium, when the free energy in minimal, the surface
area of the liquid-gas interface is also minimal and one can show that this surface
is described by the Young-Laplace Equation:

ψm = pw − pa = σwa

[

1

r1
+

1

r2

]

, (5)

where pw and pa are the pressures in water and air, respectively, and r1, r2 are the
principal radii of curvature. We use the convention that the sign of the radius is
negative if it is within the air phase. In the simplest case of a cylindrical capillary
(5) reduces to ψm = pw − pa = 2σwa/r.
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There are a few important implications:

• The energy density [J m−3] equals the pressure jump across the interface [N
m−2]

• In equilibrium, r is constant for constant depth

• Water in wettable porous media tends to fill the small pores (maximizing r)
while air reside in the large pores.

Consequently, there must be a relation between the volumetric water content θ and
the curvature of the minimal interfaces and herewith ψm. This relation θ(ψ) is
illustrated in figure 2: with decreasing water content, the water retreats to smaller
pores and the matric potential ψm becomes more negative.

�����
	�	 ������

�������������! "�#�$&%('�)�*!+

,�-�.&/�/10�2!3 4�5�6�7�8�9!:

Figure 2: Distribution of different phases (water: grey, air: black) within a 2D section
through a porous media at different matric potentials ψm. Note the different radii of

curvature of the interfaces according to the Young-Laplace equation (5).

We note that in many applications - and also in this course - the equivalent height
of a water column hi [cmWC] is used instead of the potential ψi with

hi :=
ψi

ρwg
(6)
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(1 cmWC ≈ 1 hPa = 1 mbar).

Additional remarks:

1. We restrict the description of the matric potential to the most simple case. In
reality the situation is much more complicated. In particular, σwa is not a constant

but depends on temperature and on the composition of the water phase (dissolved
chemicals). Moreover, the wettability of soil may vary in time and space. Finally,

σwa changes with the thickness of the water layer when going to very dry conditions.

2. We assume that there is an instantaneous equilibrium between θ and ψm which is
only the case at high water contents and herewith small resistivity to water flow. In
the dry range however, water in adsorbed films is barely mobile and equilibration

has to be reached through vapor diffusion which is a very slow process.

3. Besides gravity and capillarity, there may be additional forces: osmotic forces due
to gradients in salt concentration, mechanical forces in case the solid material is

deformable (this is the rule especially in clay rich soils), and the air pressure may
be locally increased when air is entrapped by the water phase.

2.2.3 Hydraulic properties

In the previous sections we have seen that we require two different relations for
an effective description of the porous medium at a larger scale: the hydraulic
conductivity function K(θ) and the relation between water content and matric
potential, which we term soil water characteristic θ(ψ).
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(b) Hydraulic conductivity function

Figure 3: Typical hydraulic properties of a loamy soil (solid line) and a sandy soil
(dashed line). The thin dashed line represents a sand with larger grains and thus, larger

pores.

Soil water characteristic

Figure 3 shows typical examples for a loamy and a sandy soil. The loamy soil has
a higher water content at saturation, θs, because of a higher porosity. Going from
complete saturation to dryer conditions by lowering the matric potential the water
content of the sandy material decreases very rapidly below a potential of hm ≈ −30
cmWC. This is because this sand is a rather homogeneous material where all pores
are within a narrow size range. According to the Young-Laplace equation (5) and
using (6) we find an equivalent pore radius for hm = −30 cmWC of r ≈ 0.05

7



mm. When going from -30 cmWC to about -100 cmWC the water within these
pores is removed. In the loamy soil the water content decreases more continuously
with decreasing water potential, meaning that the size distribution of pores is much
broader compared to the sand. Clearly, the shape of the soil water characteristic
is an effective description of the underlying pore structure. However, it should be
noted that not only the size distribution of pores determines the shape of θ(ψ) but
also the connectivity of the pores. The complicated connectivity of pores in soil also
leads to the phenomenon of hysteresis. Both effects are illustrated in Figure 4.
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Figure 4: Effect of pore connectivity on the hysteretic behavior of the water
characteristic shown for an idealized pore: at ψ1 < ψm < ψ2 we can find very different
water contents during drainage (light grey) and wetting (dark grey) at the same matric

potential (same interface radius). Without the effect of connectivity (in case of parallel
capillaries) we would find the non-hysteretic dotted line.

The water characteristic is often described by the parameterization of van Genuchten
which can be fitted to a wide range of different materials:

Θ(ψ) =
θ − θr

θs − θr

= [1 + [αψ]n]−1+1/n (7)

with the parameters
Θ [-] water saturation [0, 1]
θs [-] water content at saturation
θr [-] residual water content
α [cm−1] empirical parameter
n [-] empirical parameter
The residual water content θr represents the small amount of water which is adsorbed
in thin films at low water potentials and which is barely mobile (see Fig. 3 for
log(−ψm) > 3 in the sand). The parameter α scales hm and thus determines the
position of the curve relative to the axis of matric potential and the parameter n
determines the shape of the curve. Thus, α is related to the mean pore size and
n to the width of the pore size distribution. However both parameters are fitting
parameters without immediate physical meaning. The parameters for the curves in
Figure 3 are give in Table 1.

Hydraulic conductivity function
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In Figure 3 the hydraulic conductivity functions K(ψm) are shown for the sandy and
the loamy soil. Although the porosity of the sand is lower, the hydraulic conductivity
at water saturation is higher in the sand. This is because the pores are larger (see
θ(ψ)). However, for decreasing water potential the conductivity in the sand drops
very rapidly. This is intuitively clear, because at the critical water potential below
hm ≈ −30 cmWC also the water content drops significantly. Hence, the shape
of θ(ψ) tells us something about the shape of K(ψ) which is also used for the
parameterization. Using arguments derived from statistical pore models Mualem

[1976] proposed to derive the hydraulic conductivity curve through integration of
the water characteristic

K(Θ) = K0Θ
τ

[
∫ Θ
0 ψ−1dΘ

∫ 1
0 ψ

−1dΘ

]2

(8)

Inserting the van Genuchten parameterization (7) this leads to

K(Θ) = K0Θ
τ

[

1 − [1 − Θn/[n−1]]1−1/n
]2

(9)

where now the conductivity is given as a function of Θ. Note that the shape
of the curve is determined by the same shape parameter n as for the soil water
characteristic. The hydraulic conductivity at water saturation, K0 is introduced as
a parameter to fix the absolute height of the hydraulic conductivity. Moreover an
additional parameter, τ , is used which is termed ’tortuosity’ and which is thought
to account for the change in the topology of the water phase with decreasing water
content. However, τ is considered to be a pure fitting parameter which frequently
is fixed at a value of 0.5.

At this point we arrive at the complete set of hydraulic parameters, describing the
hydraulic properties of porous media. These parameters are listed in Table 1 for
the examples shown in Figure 3. The aim of the first part of this course is to
experimentally determine such a parameter set for a given soil.

Table 1: van Genuchten/Mualem parameters of the hydraulic functions shown in
Figure 3

Parameter Sand (fine) Sand (coarse) Silt
α [m−1] 2.3 5.3 0.7
n 4.17 4.17 1.3
θr 0.03 0.03 0.01
θs 0.32 0.32 0.41
τ 0.5 0.5 0.5
K0 [10−5 m s−1] 2.2 5.5 1.0

2.2.4 Experimental determination of hydraulic properties by inverse
modeling

Direct measurements of hydraulic properties are very time consuming and, in case
of hydraulic conductivity, also very difficult. In this practical course, we apply an
indirect method, the approach of inverse modeling, which is based on the theory
given in the previous chapter.
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The basic idea is that we can describe the dynamics of the system through Richards
equation (3). Thus, for a given set of initial and boundary conditions, we can predict
the behavior of the system in case the hydraulic properties are known - which is not
the case here. But we can observe the behavior of the system and choose the
hydraulic properties such that they explain our observation. This approach is called
inverse modeling. This is in contrast to the classical direct problem: Given the
material properties, the initial and boundary conditions and a convenient model we
solve for the dynamic behavior. Here, we face the inverse problem: Given the initial
and boundary conditions, a convenient model and the system dynamics we solve for
the material properties
In particular, the soil sample is excited by applying different pressures to the water
phase at the lower boundary of the sample and we measure the induced water flow
over that boundary and the matric potential of the water at some point within
the soil. Then, Richards equation is solved to simulate these fluxes and potentials.
Thereby we start with a first guess of starting values for the hydraulic parameters
(Table 1). Subsequently, these parameters are changed iteratively to minimize the
difference between experimental results and the simulation which finally leads to
the determination of the parameters. In that way, all parameters are estimated
consistently for one single experiment.
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2.3 Experiment

2.3.1 Setup of the experiment

Figure 5 shows a sketch of the experimental set up for a so called ’mulitstep-outflow’
experiment:

• The soil sample is mounted on a porous plate which is completely saturated
with water. The pores of this plate are small enough to stay water saturated
in the range of pressures applied during the experiment. Thus, the plate is
only permeable for water not for gas. In this way we connect the soil water to
an outer water reservoir the pressure of which can be controlled.

• A pressure sensor (DS1) is installed at the porous plate.

• A tensiometer with pressure sensor (DS3) is installed in 2 cm depth to measure
the matric potential during the experiment.

• The water outflow is collected in a burette. The water level in the burette can
be measure by another pressure sensor (DS2).

• The pressure at the porous plate can be controlled by a computer through 2
magnetic valves (V1, V2) which are connected to a pressure reservoir and the
atmosphere respectively.

2.3.2 Example

Figure 6 shows typical results obtained by a multistep-outflow experiment:

• Exciting the system:
Dashed line pressure at the porous plate (lower boundary condition) as
controlled by the computer to excite the system.

• System response:
Triangles pressure at the tensiometer (DS3).
Circles water level in the burette (DS2).

• Parameter estimation:
Thick line solution of Richards Equation for the water dynamics (flow into
the burette and back to the soil) for the given boundary conditions and a
hypothetical set of hydraulic parameters.
Thin line corresponding solution of Richards Equation for the pressure at
the tensiometer.

11



Unterdruck
Behälter

Schleuse
M1M2

M1 M2

V1

V2

V3

V4

V5

DS1

DS2

Fraktionssammler

part I (hydraulic properties)

soil

DS3

pump

part II (transport properties)

balance

input solution

sprinkler

pressure

pressure

tank

tank

reservoir

bu
re

tte

porous plate

fraction collector

Figure 5: Sketch of the experimental set up

2.3.3 Schedule of the practical course (part I)

First day:

1. Introduction

2. Calibration of pressure sensors

3. Installation of the tensiometer and all pressure sensors

4. Installation of magnetic valves.

5. Saturation of the sample with water.

6. Quality assurance of the sensors’ output

7. Estimation of optimal boundary conditions (pressure steps) based on estimated
pore size distribution using Young-Laplace equation.

8. Configuration of the boundary conditions

9. Start of the experiment which runs over the night.

Second day:
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Figure 6: Typical results of a multistep outflow experiment

1. End of the Experiment.

2. Introduction to the parameterization of hydraulic material properties.

3. Parameter estimation ’by hand’. A computer program is provided that solves
Richards equation for a given set of hydraulic parameters and the specified
initial and boundary conditions. Starting with a first guess (parameters for
sand in Tab. 1), the parameters are changed such that the difference between
experimental results and simulations is minimized.

4. Parameter optimization using Levenberg-Marquardt algorithm for non-linear
regression. Thereby, the squared sum

χ2 =
N

∑

i=1

[

yi − fi(η)

σi

]2

of deviations between experiment and simulation is minimized, where yi is the
measurement i and fi(η) is the expected result based on the parameter vector
η(θs, θr, α, n, τ,Ks) and σi is the estimated variance for the measurement at
point i.

5. Critical discussion of the quality of the results: Confidence intervals and
correlations of the parameters, error sources.

2.4 What to learn in this experiment

1. The concept of effective properties of a complex object (soil) which cannot be
described in any detail.
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2. Fundamentals of inverse modeling, i.e. regression, where the fitted model is
not a simple functional relation but requires the numerical solution of a partial
differential equation.

3. Application of electronically controlled devices.

2.5 Questions you should be able to answer before start-
ing

1. What is hydraulic conductivity? How qualitatively does it depend on water
content?

2. What is matric potential? What is its physical basis?

3. What is the soil water characteristic function and what is its general form?
Why?

4. What is the origin of the hysteresis of θ(ψm)?

5. How does the multi-step outflow measurement work?
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3 Part II: Measurement and parameterization of

solute transport

3.1 Introduction

As we have seen in the first part, the hydraulic properties of porous media together
with Richards’ Equation provide the basis for modeling the dynamics of fluids in
porous media. Given this dynamics what can we say about the transport of dissolved
chemicals?
We consider conservative solutes, meaning dissolved chemicals that do not interact
with the solid phase through sorption or any reaction. For such chemicals the mean
transport velocity can be calculated from the water flux jw which may be obtained
as a result of Richards’ Equation.
However, in many circumstances we are not only interested in the mean velocity of
solutes but especially in the highest or the lowest velocities. These extreme values
are related to questions like: When will the first percent of some contaminant reach
the groundwater? or, how long does it take to remove some resident contamination
from a porous medium?
It is evident from the heterogeneous structure of most porous media (see Figure 1)
that the velocity field encountered at the pore scale is heterogeneous as well. There
may be a wide range of velocities due to the different size and different continuity of
pores. As a consequence, solute transport in porous media is typically characterized
by significant dispersion processes. Thus, an originally sharp solute pulse is blurred
by the wide spectrum of microscopic velocities in addition to molecular diffusion.
This process is referred to as hydrodynamic dispersion. The aim of this part is to
measure and model the dispersion of a solute pulse for a transport experiment in a
soil column.

3.2 Theory

3.2.1 Convection-Dispersion model (CD)

We start from the consideration of a heterogeneous velocity field within the pore
space of a porous medium as illustrated in Fig. 7, and we look at the fate of a set
of particles which enter this velocity field somewhere at the boundary z0 at time
t0.
The particles move according to the streamlines of the velocity field and after some
time ∆t they reach the location ∆z with mean 〈z〉 and variance σ2

z due to the
different velocities. In an initial stage of this process it is likely that the particles
retain the velocity which they encountered at the beginning. Consequently, we would
expect that the variance of transport distances will increase with time according to
the heterogeneity of the flow field.
In a later stage, we assume that each particle may change its velocity when moving
from one streamline to another through molecular diffusion. Thus, in the limit of
long travel times, each particle has explored all different velocities within the porous
medium. Then, according to the central limit theorem (CLT), the distribution of
travel distances approaches a Gaussian distribution with a given mean and variance.
Thereby, the mean 〈z〉 = V̄ t depends on the mean velocity V̄ which can be calculated
from the water flux

V̄ =
jw
θ
, (10)
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Figure 7: Dispersion of a solute pulse through a heterogeneous velocity field

and the variance is a result of hydrodynamic dispersion and molecular diffusion.
This is the basic idea for the convection-dispersion model (CD) where we distinguish
between a convective and a dispersive component of solute transport. The convective
solute flux jconv

s [M L−2 T−1] is determined by the water flux:

jconv
s = jwcw , (11)

where cw is the solute concentration in the water phase. The dispersive component
jdisp
s is described in analogy to a diffusion process:

jdisp
s = −Deff

∂

∂z
cw , (12)

whereDeff is an effective diffusion coefficient which comprises all dispersion processes
including molecular diffusion and hydrodynamic dispersion. This formulation is
motivated by the insight, that hydrodynamic dispersion as well as molecular diffusion
leads to a Gaussian solute distribution. From (11) and (12) we obtain the total solute
flux as

js = jconv
s + jdisp

s = jwcw −Deff
∂

∂z
cw . (13)

To arrive at a complete description of solute transport we formulate the mass
balance

∂

∂t
θcw +

∂

∂z
js = 0 , (14)

16



and we insert the flux law (13) to get the convection dispersion equation (CDE):

∂

∂t
θcw +

∂

∂z

[

jwcw −Deff
∂

∂z
cw

]

= 0 , (15)

We can simplify this equation by inserting the convective velocity (10) and by re-
placing the effective dispersion coefficient by D := Deff/θ. Then, assuming constant
water content θ, we get

∂

∂t
cw + V

∂

∂z
cw −D

∂2

∂z2
cw = 0 , (16)

with V and D as free parameters of the CD-model. Evidently, the mean travel
distance of a solute pulse at a given time t is related to V and the variance of travel
distances is related to D. From analytical solutions of (16) we find:

〈z〉 = V t , (17)

and
var(z) = 2Dt . (18)

In analogy to the distribution of travel distances at a given time t, we can also
analyze the distribution of travel times to a given depth z. This distribution can be
measured in a classical column experiment where a solute pulse is infiltrated into the
porous media by a constant water flux and the solute concentration in the outflow
is measured as a function of time. Figure 8 shows the result of such a break through

curve for a solute input in form of a concentration step. Clearly, the expectation of
the travel time 〈t〉 and the variance of travel times again depend on the parameters
V and D. We find

〈t〉 =
z

V
, (19)

and

var(t) =
2Dz

V 3
. (20)

Thus, we recognize, that the parameters V and D can be estimated from the first
two moments of the travel distance distribution or the travel time distribution
respectively.
In this practical course we will measure the break through curve of the food dye
Brilliant Blue which is applied as a step input at constant water flux.

3.2.2 Extension to multi-domain models (MIM)

The CD-model described above implies that all available water is equally involved in
solute transport. However, in many experiments we find that the shape of the break-
through curve is not Gaussian, especially that a relatively quick break through of
solute is followed by a long tail of very slow particles. Conceptually, this phenomenon
can be described by separating the available water θ into two components, one, θm,
which is mobile and another, θim, which is immobile. Then we obtain the so-called
mobile-immobile model (MIM)

∂

∂t
cm +

θim

θm

∂

∂t
cim + V

∂

∂z
cm −D

∂2

∂z2
cm = 0 (21)

∂

∂t
cim = −ω[cim − cm] , (22)
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where we consider the concentration in the mobile phase only, and an additional
term describing the exchange between the mobile and the immobile phase. This
exchange, ∂tcim, is controlled by the rate parameter ω ∈ [0,∞], where ω → 0 means
no exchange and ω → ∞ instantaneous equilibrium between mobile and immobile
phase. If ω > 0 the mean velocity of the particles is reduced due to their residence
time in the immobile phase. This residence time is proportional to θ/θm which can
be defined as a retardation factor

R =
θ

θm
= 1 +

θim

θm
(23)

As an extension to the classical CD model we now have the additional parameters
R and ω to fit the model to measured break through curves. A typical example is
shown in Figure 8. (Note that in the limit of long travel distances or long travel
times, the shape of the break through curve will be identical to that of a simple CD
process, however the mean velocity is reduced by the factor R).
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Figure 8: Measured break through curve (symbols) together with fitted CD (dashed

line) and fitted MIM-model (solid line)

3.3 Experiment

3.3.1 Setup of the experiment

The experimental setup is shown in Figure 5. The sample stays in the same position
on the ceramic plate as for the multistep outflow experiment in part I. But now
the valves M are turned to position 2 and the water below the ceramic plate is
removed. Thus, the pressure at the lower boundary is applied through the gas
phase and the outflow of water is collected in a reservoir. Depending on the water
flux, this reservoir is depleted from time to time into test tubes which are mounted
on a fraction collector. The depletion is controlled by 3 magnetic valves: first the
pressure line is interrupted (V3) then atmospheric pressure is let in (V4), finally
the reservoir is depleted by opening V5. In this way it is possible to analyze the
solute concentration in the outflow as a function of time.
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At the upper boundary we install a sprinkler, which is connected to a reservoir of
input solution. This reservoir is placed on a balance, so that the actual flux can
be determined, and can be controlled by a pump. All devices are controlled by a
computer.

3.3.2 Schedule of the practical course (part II)

First day:

1. Introduction

2. Rebuild the experimental setup: switch valves M to position 2, remove water
below the ceramic plate, connect outflow tube to V4.

3. Install the fraction collector with test tubes, prepare pure water as input
solution on the balance and connect the input solution through a pump with
the sprinkler.

4. Before mounting the sprinkler on the column, switch on the pump at a high
speed an remove all air bubbles within the tubes and the sprinkler.

5. Connect all the devices to the corresponding ports at the computer and write
what you have done to the file ’instruments.dat’ which is required by the
control program.

6. We want to establish a stationary water flux jw = 5 mm/h and we wish to have
a constant matric potential ψm within the entire sample during the experiment.
Calculate the matric potential ψm which is expected for the desired water flux
from the hydraulic parameters obtained in part I. This potential is given as
the lower boundary condition in the file ’dynamics.dat’.

7. Calculate the time interval to deplete the reservoir so that the amount of
water within the reservoir will not exceed 10 ml. Add this time to the file
’dynamics.dat’.

8. Start the experiment with pure water to establish stationary flow conditions.
(think about how to check if this conditions are reached).

9. Calculate the fraction time for the fraction collector so that you will get 20
ml/tube.

10. Calculate the duration of the experiment, so that the volume of water inside
the sample is replaced 4 times during the experiment (you can calculate the
expected water content from the hydraulic parameters obtained in part I).

11. After stationary conditions are reached, start of the experiment which runs
over the night: Switch input solution to Brilliant Blue and switch on the
fraction collector.

Second day:

1. End of the Experiment.
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2. Collect all the tubes and analyze the dye concentration with the spectrometer.

3. Calculate velocity V and dispersion coefficient D from mean and variance of
the travel time using (19) and (20).

4. Use these parameters as a first guess and optimize them by adjusting the CD
model to the complete set of measured data. A computer program is provided
that solves the CDE for a given set of parameters.

5. After you arrived at an optimal fit based on the CD-model use the MIM-model
to see if you can get a better description of the experiment.

6. Use the Levenberg-Marquardt algorithm to get even better.

7. Critical discussion of the quality of the results: Confidence intervals and
correlations of the parameters? which data are sensitive for which parameters?

3.4 What to learn in this experiment

1. The concept of effective description of solute transport within a complex object
(soil) which cannot be described in any detail.

2. Estimation of control factors for an experiment based on known boundary
conditions and a process model.

3. Application of electronically controlled devices.

3.5 Questions you should be able to answer before start-
ing

1. What is the meaning of hydrodynamic dispersion in porous media?

2. Why is it a good idea to describe dispersion in analogy to diffusion?

3. What is a break through curve?
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